BIẾN ĐỔI LƯỢNG GIÁC

Tổng hợp các công thức lượng giác đầy đủ nhất dùng trong cả chương trình toán lớp 9, 10, 11, bao gồm các công thức lượng giác cơ bản, công thức nhân, biến đổi tích thành cổng, lượng giác của các cung đặc biệt, giá trị lượng giác của các góc đặc biệt, các công thức nghiệm cơ bản... Hãy nắm vững những công thức này để có thể triển khai các dạng bài tập về lượng giác. Mời các bạn tham khảo.

Bạn đang xem: Biến đổi lượng giác


1. Công thức lượng giác cơ bản

2. Công thức cộng lượng giác

1. sin (a ± b) = sin a.cos b ± cos a.sin b

2. cos (a + b) = cos a.cos b - sin a.sin b

3. cos (a - b) = cos a.cos b + sin a.sin b

Mẹo nhớ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin dấu trừ. Tan thì tan nọ tan kia chia cho mẫu số 1 trừ tan tan.

Xem thêm: 210 Tranh Tô Màu Công Chúa Elsa Ideas In 2021, 345+ Bộ Tranh Tô Màu Công Chúa Elsa Đẹp Nhất

3. Công thức các cung liên kết trên đường tròn lượng giác

Mẹo nhớ: cos đối, sin bù, phụ chéo, tan hơn kém π

Hai góc đối nhau:


cos (-x) = cos xsin (-x) = -sin xtan (-x) = -tan xcot (-x) = -cot x

Hai góc bù nhau:

sin (π - x) = sin xcos (π - x) = -cos xtan (π - x) = -tan xcot (π - x) = -cot x

Hai góc phụ nhau:

sin (π/2 - x) = cos xcos (π/2 - x) = sin xtan (π/2 - x) = cot xcot (π/2 - x) = tan x

Hai góc hơn kém π:

sin (π + x) = -sin xcos (π + x) = -cos xtan (π + x) = tan xcot (π + x) = cot x

Hai góc hơn kém π/2:

sin (π/2 + x) = cos xcos (π/2 + x) = -sin xtan (π/2 + x) = -cot xcot (π/2 + x) = -tan x

4. Công thức nhân

Công thức nhân đôi:

sin2a = 2sina.cosacos2a = cos2a - sin2a = 2cos2a - 1 = 1 - 2sin2a

Công thức nhân ba:

sin3a = 3sina - 4sin3acos3a = 4cos3a - 3cosa

Công thức nhân bốn:

sin4a = 4.sina.cos3a - 4.cosa.sin3acos4a = 8.cos4a - 8.cos2a + 1hoặc cos4a = 8.sin4a - 8.sin2a + 1

5. Công thức hạ bậc

Thực ra những công thức này đều được biến đổi ra từ công thức lượng giác cơ bản, ví dụ như: sin2a=1 - cos2a = 1 - (cos2a + 1)/2 = (1 - cos2a)/2.


6. Công thức biến tổng thành tích

Mẹo nhớ: cos cộng cos bằng 2 cos cos, cos trừ cos bằng trừ 2 sin sin; sin cộng sin bằng 2 sin cos, sin trừ sin bằng 2 cos sin.

7. Công thức biến đổi tích thành tổng

" width="338" height="40" data-latex="1.\ \cos a.\cos b=\frac{1}{2}\left<\cos\left(a+b\right)+\cos\left(a-b\right)\right>" data-src="https://tex.vdoc.vn?tex=1.%5C%20%5Ccos%20a.%5Ccos%20b%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Ccos%5Cleft(a%2Bb%5Cright)%2B%5Ccos%5Cleft(a-b%5Cright)%5Cright%5D">" width="348" height="40" data-latex="2.\ \sin a.\sin b=-\frac{1}{2}\left<\cos\left(a+b\right)-\cos\left(a-b\right)\right>" data-src="https://tex.vdoc.vn?tex=2.%5C%20%5Csin%20a.%5Csin%20b%3D-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Ccos%5Cleft(a%2Bb%5Cright)-%5Ccos%5Cleft(a-b%5Cright)%5Cright%5D">

" width="346" height="40" data-latex="3.\ \sin a.\cos b=-\frac{1}{2}\left<\sin\left(a+b\right)+\sin\left(a-b\right)\right>" data-src="https://tex.vdoc.vn?tex=3.%5C%20%5Csin%20a.%5Ccos%20b%3D-%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Csin%5Cleft(a%2Bb%5Cright)%2B%5Csin%5Cleft(a-b%5Cright)%5Cright%5D">

8. Nghiệm phương trình lượng giác

Phương trình lượng giác cơ bản:

" width="368" height="47" data-latex="1.\;\sin a=\sin b\;\Leftrightarrow\left<\begin{array}{c}a=b+k2\mathrm\pi\\a=\mathrm\pi-\mathrm b+\mathrm k2\mathrm\pi\end{array}(k\in Z)\right>" data-src="https://tex.vdoc.vn?tex=1.%5C%3B%5Csin%20a%3D%5Csin%20b%5C%3B%5CLeftrightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%3Db%2Bk2%5Cmathrm%5Cpi%5C%5Ca%3D%5Cmathrm%5Cpi-%5Cmathrm%20b%2B%5Cmathrm%20k2%5Cmathrm%5Cpi%5Cend%7Barray%7D(k%5Cin%20Z)%5Cright%5D">

" width="356" height="47" data-latex="2.\;\cos a=\cos b\;\Leftrightarrow\;\left<\begin{array}{c}a=b+k2\mathrm\pi\\a=-b+k2\mathrm\pi\end{array}(k\in Z)\right>" data-src="https://tex.vdoc.vn?tex=2.%5C%3B%5Ccos%20a%3D%5Ccos%20b%5C%3B%5CLeftrightarrow%5C%3B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Da%3Db%2Bk2%5Cmathrm%5Cpi%5C%5Ca%3D-b%2Bk2%5Cmathrm%5Cpi%5Cend%7Barray%7D(k%5Cin%20Z)%5Cright%5D">

3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)

4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)

Phương trình lượng giác trong trường hợp đặc biệt:


sin a = 0 ⇔ a = kπ; (k ∈ Z)sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)cos a = 1 ⇔ a = k2π; (k ∈ Z)cos a = -1 ⇔ a = π + k2π; (k ∈ Z)

9. Dấu của các giá trị lượng giác

Góc phần tư sốIIIIIIIV
Giá trị lượng giác
sin x++--
cos x+--+
tan x+-+-
cot x+-+-

10. Bảng giá trị lượng giác một số góc đặc biệt

11. Công thức lượng giác bổ sung

Biểu diễn công thức theo

Công thức lượng giác dạng ảnh:



3,3 ★ 3